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Energy Levels of Interacting Fields in a Box
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We study the influence of boundary conditions on energy levels of interacting
fields in a box and discuss some consequences when we change the size of the
box. In order to do this we calculate the energy levels of bound states of a scalar
massive field x interacting with another scalar field f through the Lagrangian
+int 5 3±2 g f 2 x 2 in a one-dimensional box on which we impose Dirichlet boundary
conditions. We find that the gap between the bound states changes with the size
of the box in a nontrivial way. For the case where the masses of the two fields
are equal and for large box the energy levels of Dashen ±Hasslacher ±Neveu (DHN
model) are recovered and we have a kind of boson condensate for the ground
state. Below a critical box size L , 2.93 (2 ! 2/M ) the ground-state level splits,
which we interpret as particle±antiparticle production under small perturbations
of box size. Below other critical sizes, L , (6/10) (2 ! 2/M ) and L , 1.71
(2 ! 2/M ), of the box, the ground state and first excited state merge in the continuum
part of the spectrum.

1. INTRODUCTION

Consider a simple system of two interacting fields described by the

Lagrangian density
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where l and g are coupling contants. In this work we study the influence of

boundary conditions on energy levels of the field x taking into account its

interaction with field f . From the above Lagrangian we derive the following

equations of motion for both fields:
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2 - m - m x 1 M 2
x x 2 3 g f 2 x 5 0 (1)

2 - m - m f 1 M 2
f f 2 l f 3 5 0 (2)

In Eq. (2) we have neglected the term 3g f x 2, which can be interpreted

as the backreaction of field x on the mass term of f . This can be achieved

if we impose that ) x ) , , min{M f / ! 3g}. Of course other regimes can be

studied from Eq. (2) by adopting different approximations.

Static solutions of the classical equation of motion (2) are given by

(Dashen et al., 1974)

f (x) 5 6
M f

! l
tanh 1 M f x

! 2 2
These are kink solutions which connect two vacua at x 5 6 } . In this

work, unlike x , the field f is not changed by boundary conditions. So in our

approximation they are transparent to f . In a future work we will consider

the most general case.
Substituting these solutions in Eq. (1), we obtain

2 - m - m x 1 M 2
x x 2 3

g

l
M 2

f tanh2 1 M f x

! 2 2 x 5 0

Since we are interested in stationary solutions, we can write x (x) 5
e 2 i v t c (x), where v are energy eigenvalues and the previous equation reduces to

d 2

dx2 c (x) 1 1 M 2
x 1 v 2 2 3

g

l
M 2

f tanh2 1 M f x

! 2 2 2 c (x) 5 0 (3)

This equation is similar to the one from the DHN model (Dahsen et al.,
1974), which describe kinks in (1 1 1) dimensions, but here two different
mass parameters appear in the potential.

In the Section 2, we calculate the bound energy levels of the field x (or

c ) constrained to a box in (1 1 1) dimensions with Dirichlet boundary

conditions. We discuss how we can interpret the splitting of the ground state

when the box is shrunk below a critical value as particle production from a

vacuum condensate.

2. BOUND SPECTRUM

In this section we obtain the energy levels of the field x by imposing

Dirichlet boundary conditions. This is done as follows. Changing of variables

z 5 M f x/ ! 2 and v 2 5 ( e 2 2)M 2
f /2, we write Eq. (3) as
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d 2

dz2 c (z) 1 1 2
M 2

x

M 2
f

1 e 2 2 2 6
g

l
tanh2z 2 c (z) 5 0

Making a new change of variable, namely E 5 2 b 1 e 2 2, where we
have defined the mass ratio b [ M 2

x /M
2
f , the above equation reduces to

d 2

dz2 c (z) 1 1 E 2 6
g

l
tanh2z 2 c (z) 5 0 (4)

For the discrete (bound) spectrum case, 0 # v 2 , 2M 2
x , we have that

2 b # E , 6 b .

In order to find the corresponding solution of Eq. (4), we make the

following variable dependent transformation (Morse and Fesbach, 1953):

c (z) 5 sechk(z)Y(z) (5)

where the parameter k P R will be determined below.

Substituting (5) in (4), we get an equation for Y(z):

d 2Y

dz2 2 2k tanh(z)
dY

dz

1 F k2 1 E 2 6g/ l
sech2(z)

1 6
g

l
2 k2 2 k G sech2(z)Y(z) 5 0 (6)

In this work, we discuss the particular case g 5 l . The general case,
including an asymptotic study for weak and strong coupling constant g, will

be presented elsewhere. Nevertheless the above condition leads to interesting

results. First it is possible to turn this equation into a hypergeometric differen-

tial equation. This is done as follows:

1. We set the term dependent on the variable z in square brackets equal

to zero, which gives a relation between k and E, i.e.,

k 5 6 ! 6 2 E (7)

2. Making a change of the independent variable, namely,

m 5
1

2
(1 2 tanh z) (8)

we obtain a hypergeometric differential equation

m (1 2 m )
d 2Y

d m 2 1 (k 1 1 2 2(k 1 1) m )
dY

d m

2 (k 1 3)(k 2 2)Y( m ) 5 0 (9)
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This equation has regular singular points at m 5 0, m 5 1, and m 5 }
and parameters a 5 k 1 3, b 5 k 2 2, and c 5 k 1 1. The two independent

analytic solutions are given by (Gradshteyn and Ryzhik, 1980)

Y1( m ) 5 2F1(k 1 3, k 2 2; k 1 1; m ) (10)

Y2( m ) 5 m 2 k
2F1( 2 2, 3; 1 2 k; m ) (11)

As is well known, if the parameter c is a positive integer, a solution of

Eq. (9) will be Y1( m ) and, if c is a negative integer, it will be given by Y2( m ).
There are other solutions containing a logarithmic term (Fuchs’ Theorem).

If c is a noninteger number, the set of two solutions Y1( m ) and Y2( m ) is a

system of linearly independent solutions (Butkov, 1968). Next we study these

three different cases for c. From now on, in order to simplify the notation,

we denote the hypergeometric function 2F1 simply as F.

Case I. c Is a Positive Integer

In this case, c 5 k 1 1 5 n, where n 5 1, 2, 3, . . . , and by Fuchs’

Theorem (Butkov, 1968), the general solution is given by

Y( m ) 5 AY1( m ) 1 BY1( m ) ln ) m ) 1 B o
`

s 5 0
as( 2 k) m s 2 k

where A and B are arbitrary constants.

It is easy to see that this solution has a logarithmic divergence at m 5
0. Since we want the solution Y( m ) be bounded, we must take B 5 0. This

comes from the constraint that for a large box (L ® } ) we must recover

DHN’ s kink and its bounded energy levels. So the solution reduces to

Y( m ) 5 AF(n 1 2, n 2 3; n; m )

where k was substituted by n 2 1.

Using the relations (5) and (7), as well as the change of variable z 5
M f x/ ! 2 in the above expression, we obtain

c (x) 5 A sech(n 2 1) 1 M f x

! 2 2 F 1 n 1 2, n 2 3; n;

1

2 F 1 2 tanh 1 M f x

! 2 2 G 2 (12)

Below, in order to simplify the notation, we will denote M f as M.

Now we impose Dirichlet boundary conditions at x 5 6 L/2 for the

solution (12), that is,
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c 1 7
L

2 2 5 A sech(n 2 1) 1 ML

2 ! 2 2 F 1 n 1 2, n 2 3; n;
1

2 H 1 6 tanh 1 ML

2 ! 2 2 J 2
5 0

From these relations we get the condition

F 1 n 1 2, n 2 3; n;
1

2 H 1 6 tanh 1 ML

2 ! 2 2 J 2 5 0 (13)

On the other hand, since 2 b # E , 6 b , from Eq. (7), we can show that

the parameter k satisfies the inequalities

! 6(1 2 b ) , k # ! 6 2 2 b , 2 ! 6 2 2 b # k , 2 ! 6(1 2 b )

Since we have considered that k P R, then from the above relations we

obtain b # 1.

So the possible values of parameter k are in the intervals 0 , k #
! 6 , 2.44 or 2.44 , 2 ! 6 # k , 0. As in this case c is a positive integer,

we must take the interval 0 , k # ! 6.
The allowed integer values of k in the interval 0 , k # ! 6 and the

corresponding values of E [from Eq.(13)] are (using the relation k 5 n 2 1)

for n 5 2, k 5 1: then E 5 5

for n 5 3, k 5 2: then E 5 2 (14)

The hypergeometric function in (13) can be written as Jacobi polynomials

(Abramowitz and Stegun, 1972) and it is not difficult to prove that substituting

the allowed values of k from (14) into (13), we do not get any consistent

solution.

Case II. c Is a Negative Integer

Now we consider c 5 k 1 1 5 2 n, where n 5 1, 2, 3, . . . , and then

we must consider the interval 2 ! 6 # k , 0. The solution of the hypergeo-
metric equation in this case is given by Y2( m ). As for the previous case, by

Fuchs’ Theorem we have that the general solution is given by

Y( m ) 5 AY2( m ) 1 BY2( m ) ln ) m ) 1 B o
`

s 5 0

as( 2 k) m s 2 k

where A and B are arbitrary constants.

In this case we can not discard the B terms in the same way as in the

previous case, since for m ® 0 we have m 2 k ln m ® 0 and s 2 k . 0 for

s 5 0, 1, 2, . . . . So we do not have a singularity at m 5 0. Nevertheless,
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we notice that the relation Y( m )/Y2( m ) is divergent in the asymptotic limit of

m 5 0, i.e.,

lim
m ® 0

Y( m )

Y2( m )
® }

Again, we can impose our natural boundary condition, that is, for a very

large box (L ® } ), the DHN solution (Dashen et al., 1974) should be

recovered. In order to do this, we must impose the following asymptotic

condition:

lim
m ® 0

Y( m )

Y2( m )
® 1

In order for this condition be valid, the coefficient B must vanish.

Therefore, our solution reduces to

Y( m ) 5 A m (n 1 1) F( 2 2, 3; 2 1 n; m )

where k was substituted by 2 (n 1 1), and A Þ 0.

As we did before, using the relations (5) and (7), as well as the change

of variable z 5 Mx/ ! 2 in the above expression, we can write the solution

in the original variables:

c (x) 5 A sech 2 (n 1 1) 1 Mx

! 2 2 {1 2 tanh(Mx/ ! 2)}(n 1 1)

2(n 1 1)

3 F( 2 2, 3; 2 1 n;
1

2 H 1 2 tanh 1 Mx

! 2 2 J 2 (15)

Now, imposing Dirichlet boundary conditions at x 5 6 L/2, namely

c 1 7
L

2 2 5 A sech 2 (n 1 1) 1 ML

2 ! 2 2 {1 6 tanh(ML/ ! 2)}(n 1 1)

2(n 1 1)

3 F( 2 2, 3; 2 1 n;
1

2 H 1 6 tanh 1 ML

2 ! 2 2 J 2 5 0

we obtain the condition

F 1 2 2, 3; 2 1 n;
1

2 H 1 6 tanh 1 ML

2 ! 2 2 J 2 5 0 (16)

In this case, the allowed integer values of k, in the interval 2 ! 6 # k ,
0 are given by using the relation k 5 2 (n 1 1),
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for n 5 0, k 5 2 1: then E 5 5

for n 5 1, k 5 2 2: then E 5 2 (17)

As in the previous case it is not difficult to write the above hypergeome-

tric function (16) as Jacobi polynomials (Abramowitz and Stegun, 1972). A

quick analysis shows that no consistent solution exists for finite L Þ 0. For
L 5 } , the DHN case (n 5 0) is obtained.

Case III. c Is a Noninteger

Since c is a noninteger number (positive or negative), the general solution

is given by

Y( m ) 5 AF(k 1 3, k 2 2; k 1 1; m ) 1 B( m ) 2 k F( 2 2, 3; 1 2 k; m ) (18)

Now we repeat the previous steps, i.e., we use the relations (5) and (7),
as well the change of variable z 5 Mx/ ! 2 in the previous expression, and

obtain

c (x) 5 sechk 1 Mx

! 2 2 1 AF 1 k 1 3, k 2 2; k 1 1;
1

2 H 1 2 tanh 1 Mx

! 2 2 J 2
1 B ? 2k F 1 2 tanh 1 Mx

! 2 2 G 2 k

F 1 2 2, 3; 1 2 k;
1

2 H 1 2 tanh 1 Mx

! 2 2 J 2 2 (19)

Now we must determine k and then, using relation (7), find the allowed

values of E. The Dirichlet boundary conditions at x 5 6 L/2 are given by

c 1 7
L

2 2 5 sechk 1 ML

2 ! 2 2 1 AF 1 k 1 3, k 2 2; k 1 1;
1

2 H 1 6 tanh 1 ML

2 ! 2 2 J 2
1 B ? 2k F 1 6 tanh 1 ML

2 ! 2 2 G 2 k

F 1 2 2, 3; 1 2 k;
1

2 H 1 6 tanh 1 ML

2 ! 2 2 J 2 2 5 0

From these relations we obtain

AF 1 k 1 3, k 2 2; k 1 1;
1

2 H 1 6 tanh 1 ML

2 ! 2 2 J 2
1 B ? 2k F 1 6 tanh 1 ML

2 ! 2 2 G 2 k

F 1 2 2, 3; 1 2 k;
1

2 H 1 6 tanh 1 ML

2 ! 2 2 J 2 5 0

This is a system of homogeneous equations for A and B. So this system

has a nontrivial solution only if the determinant of system is zero, i.e.,
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H 1 2 tanh 1 ML

2 ! 2 2 J
2 k

F 1 k 1 3, k 2 2; k 1 1;
1

2 H 1 1 tanh 1 ML

2 ! 2 2 J 2
3 F 1 2 2, 3; 1 2 k;

1

2 H 1 2 tanh 1 ML

2 ! 2 2 J 2 2 H 1 1 tanh 1 ML

2 ! 2 2 J
2 k

3 F 1 k 1 3, k 2 2; k 1 1;
1

2 H 1 2 tanh 1 ML

2 ! 2 2 J 2
3 F 1 2 2, 3; 1 2 k;

1

2 H 1 1 tanh 1 ML

2 ! 2 2 J 2 5 0 (20)

Again we can write the above hypergeometric functions as Jacobi poly-
nomials (Abramowitz and Stegun, 1972). In this way, from (20) we obtain

a transcendental equation for the parameter k,

1 1 1 tanh(ML/2 ! 2)

1 2 tanh(ML/2 ! 2) 2
k

5 6
k2 2 1 1 3 k tanh(ML/2 ! 2) 1 3 tanh2 (ML/2 ! 2)

k2 2 1 2 3 k tanh(ML/2 ! 2) 1 3 tanh2 (ML/2 ! 2)
(21)

Notice that substituting k by 2 k in Eq. (21), it can be verified that this

equation is satisfied. So these solutions are valid in the intervals (0, 1) ø
(1, 2) ø (2, ! 6) , R and ( 2 ! 6, 2 2) ø ( 2 2, 2 1) ø ( 2 1, 0) , R. Observe

that for the negative sign, k 5 2 1 is a solution of Eq. (21), but it is not
allowed since now we are considering k ¸ Z.

An analytic solution for the transcendental equation (21) was not found,

but it is possible to obtain numerical solutions for it, as we can see in Fig.

1 for the case that b 5 1.

Figure 1 shows the relation between parameter k and the size L of the

box. Observe that both ground state and the first excited state shift with the
size of the box. Starting with a very large box size L, as it decreases, the

values of v 0 and v 1 increase from v 0 5 0 (k 5 2 2 and L ® } ) to v 0 5
! 2M (k 5 0), and from v 1 5 ! 3/2M (k 5 2 1 and L ® } ) to v 1 5
! 2M (k 5 0). Close to the critical value , 0.6 for v 0 and , 1.71 for v 1 these

bound states merge in the continuum part of the spectrum (k 5 0). On the

other hand, for L ® } the values of v 0 and v 1 decreases until they reach
their minimum values v 0 5 0 and v 1 5 ! 3/2 M, respectively, just as in the

DHN model. This behavior happens for both cases of positive and negative

signs in Eq. (21) with negative k. For any positive k and large box size L
the Eq. (21) has no solution, which can be checked analytically (see also
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Fig. 1. Shifts of bound states with the size of the box. Here b 5 1. The horizontal lines show

the asymptotic values of the DHN model (Dashen et al., 1974).

Fig. 1). So we discard positive values of k since for a large box (L ® } )

they do not lead to DHN energy levels.
We can also obtain a relation between v (L)/M and box size L. From

Eq. (7) and the relation v 2 5 ( e 2 2)M 2/2 we get

v
M

5 6 ! 3 2 b 2
k2(L)

2
(22)

In Fig. 2 we plot two cases for this relation, namely b 5 1 and b 5
1±2 . For the first case ( b 5 1), the ground state v 0 for large box size may form

an approximated vacuum particle±antiparticle condensate, since both levels
are exponentially close to one another. Roughly speaking, below a critical

size ( , 2.93) any perturbation of box size will induce pair formation from

this energy level. This could be important for particle production in the

presence of strong fields. Squeezed fields could have an enhanced production.
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Fig. 2. Energy levels of the ground state of the field x (or c ) as a function of the box size L.

The horizontal lines show the asymptotic values of the DHN model (Dashen et al., 1974).

Another interesting behavior of the energy levels is shown in Fig. 3.

We plot the difference between the levels v 0 and v 1 for arbitrary distance

L. It is interesting to see a peak around the critical value ML/2 ! 2 , 2.93
and that the increasing part of the curve (left-hand side) from the peak shows

a nonsmooth growth with several secondary maxima and minima.

3. CONCLUSIONS

In this work we calculated the solutions of a Klein±Gordon type equation

in a one-dimensional box for which we impose Dirichlet boundary conditions

and in the presence of a kink-type potential generated by a second scalar,

self-interacting field which in our approximation is not subjected to the
boundary conditions. Energy levels of bound states for nontrivial solutions

are obtained as roots of a transcendental equation involving L and k. Although

we have not obtained analytic solutions to it, we have studied numerical

solutions (see Fig. 1).
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Fig. 3. The gap between levels v 0 and v 1 versus the size L of the box.

The ground state v 0 and the first excited state v 1 shift with the size L
of the box (see Fig. 1) for both cases of positive and negative signs. As the

size L of the box decreases, v 0 increases in the interval [0, ! 2M ] and v 1

in [ ! 3±2M, ! 2M ]. Close to the critical value , 0.6 for v 0 and , 1.71 for v 1,

all the bounded states merge in the continuum part of the spectrum. For large

distances (L 5 ` ) we obtain the energy levels of the DHN model. The
decrease of L induces shifts on the bound-state levels of the system, and

close to a critical size , 2.93 we have ª just barely boundº condensate (Morse

and Feshbach, 1953) that may decay against a small perturbation on the

system, with particle pair creation (Fig. 2).

The gap between the two bound states presents a peak at ML/2 ! 2 ,
2.93 and shows a nonsmooth behavior. It is interesting that the critical value
for the splitting of the levels coincides with the value of the peak position,

but we do not have any explanation for this fact. This, as well the study of

the system taking into account finite boundary conditions on both fields f
and k , will be dealt with elsewhere.
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